Posterior Inference in Curved Exponential Families under Increasing Dimensions
نویسندگان
چکیده
This work studies the large sample properties of the posterior-based inference in the curved exponential family under increasing dimension. The curved structure arises from the imposition of various restrictions on the model, such as moment restrictions, and plays a fundamental role in econometrics and others branches of data analysis. We establish conditions under which the posterior distribution is approximately normal, which in turn implies various good properties of estimation and inference procedures based on the posterior. In the process we also revisit and improve upon previous results for the exponential family under increasing dimension by making use of concentration of measure. We also discuss a variety of applications to high-dimensional versions of the classical econometric models including the multinomial model with moment restrictions, seemingly unrelated regression equations, and single structural equation models. In our analysis, both the parameter dimension and the number of moments are increasing with the sample size.
منابع مشابه
A pr 2 00 9 POSTERIOR INFERENCE IN CURVED EXPONENTIAL FAMILIES UNDER INCREASING DIMENSIONS
The goal of this work is to study the large sample properties of the posterior-based inference in the curved exponential family under increasing dimension. The curved structure arises from the imposition of various restrictions, such as moment restrictions, on the model, and plays a fundamental role in various branches of data analysis. We establish conditions under which the posterior distribu...
متن کاملTesting a Point Null Hypothesis against One-Sided for Non Regular and Exponential Families: The Reconcilability Condition to P-values and Posterior Probability
In this paper, the reconcilability between the P-value and the posterior probability in testing a point null hypothesis against the one-sided hypothesis is considered. Two essential families, non regular and exponential family of distributions, are studied. It was shown in a non regular family of distributions; in some cases, it is possible to find a prior distribution function under which P-va...
متن کاملClassical and Bayesian Inference in Two Parameter Exponential Distribution with Randomly Censored Data
Abstract. This paper deals with the classical and Bayesian estimation for two parameter exponential distribution having scale and location parameters with randomly censored data. The censoring time is also assumed to follow a two parameter exponential distribution with different scale but same location parameter. The main stress is on the location parameter in this paper. This parameter has not...
متن کاملOn the Computational Complexity of MCMC-based Estimators in Large Samples
In this paper we examine the implications of the statistical large sample theory for the computational complexity of Bayesian and quasi-Bayesian estimation carried out using Metropolis random walks. Our analysis is motivated by the Laplace-Bernstein-Von Mises central limit theorem, which states that in large samples the posterior or quasi-posterior approaches a normal density. Using the conditi...
متن کاملInference in Curved Exponential Family Models for Networks
Network data arise in a wide variety of applications. Although descriptive statistics for networks abound in the literature, the science of fitting statistical models to complex network data is still in its infancy. The models considered in this article are based on exponential families; therefore, we refer to them as exponential random graph models (ERGMs). Although ERGMs are easy to postulate...
متن کامل